The search functionality is under construction.

Keyword Search Result

[Keyword] neural networks(287hit)

21-40hit(287hit)

  • Local Binary Convolution Based Prior Knowledge of Multi-Direction Features for Finger Vein Verification

    Huijie ZHANG  Ling LU  

     
    LETTER-Pattern Recognition

      Pubricized:
    2023/02/22
      Vol:
    E106-D No:5
      Page(s):
    1089-1093

    The finger-vein-based deep neural network authentication system has been applied widely in real scenarios, such as countries' banking and entrance guard systems. However, to ensure performance, the deep neural network should train many parameters, which needs lots of time and computing resources. This paper proposes a method that introduces artificial features with prior knowledge into the convolution layer. First, it designs a multi-direction pattern base on the traditional local binary pattern, which extracts general spatial information and also reduces the spatial dimension. Then, establishes a sample effective deep convolutional neural network via combination with convolution, with the ability to extract deeper finger vein features. Finally, trains the model with a composite loss function to increase the inter-class distance and reduce the intra-class distance. Experiments show that the proposed methods achieve a good performance of higher stability and accuracy of finger vein recognition.

  • CAMRI Loss: Improving the Recall of a Specific Class without Sacrificing Accuracy

    Daiki NISHIYAMA  Kazuto FUKUCHI  Youhei AKIMOTO  Jun SAKUMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/01/23
      Vol:
    E106-D No:4
      Page(s):
    523-537

    In real world applications of multiclass classification models, misclassification in an important class (e.g., stop sign) can be significantly more harmful than in other classes (e.g., no parking). Thus, it is crucial to improve the recall of an important class while maintaining overall accuracy. For this problem, we found that improving the separation of important classes relative to other classes in the feature space is effective. Existing methods that give a class-sensitive penalty for cross-entropy loss do not improve the separation. Moreover, the methods designed to improve separations between all classes are unsuitable for our purpose because they do not consider the important classes. To achieve the separation, we propose a loss function that explicitly gives loss for the feature space, called class-sensitive additive angular margin (CAMRI) loss. CAMRI loss is expected to reduce the variance of an important class due to the addition of a penalty to the angle between the important class features and the corresponding weight vectors in the feature space. In addition, concentrating the penalty on only the important class hardly sacrifices separating the other classes. Experiments on CIFAR-10, GTSRB, and AwA2 showed that CAMRI loss could improve the recall of a specific class without sacrificing accuracy. In particular, compared with GTSRB's second-worst class recall when trained with cross-entropy loss, CAMRI loss improved recall by 9%.

  • A Non-Intrusive Speech Quality Evaluation Method Based on the Audiogram and Weighted Frequency Information for Hearing Aid

    Ruxue GUO  Pengxu JIANG  Ruiyu LIANG  Yue XIE  Cairong ZOU  

     
    LETTER-Speech and Hearing

      Pubricized:
    2022/07/25
      Vol:
    E106-A No:1
      Page(s):
    64-68

    For a long time, the compensation effect of hearing aid is mainly evaluated subjectively, and there are fewer studies of objective evaluation. Furthermore, a pure speech signal is generally required as a reference in the existing objective evaluation methods, which restricts the practicality in a real-world environment. Therefore, this paper presents a non-intrusive speech quality evaluation method for hearing aid, which combines the audiogram and weighted frequency information. The proposed model mainly includes an audiogram information extraction network, a frequency information extraction network, and a quality score mapping network. The audiogram is the input of the audiogram information extraction network, which helps the system capture the information related to hearing loss. In addition, the low-frequency bands of speech contain loudness information and the medium and high-frequency components contribute to semantic comprehension. The information of two frequency bands is input to the frequency information extraction network to obtain time-frequency information. When obtaining the high-level features of different frequency bands and audiograms, they are fused into two groups of tensors that distinguish the information of different frequency bands and used as the input of the attention layer to calculate the corresponding weight distribution. Finally, a dense layer is employed to predict the score of speech quality. The experimental results show that it is reasonable to combine the audiogram and the weight of the information from two frequency bands, which can effectively realize the evaluation of the speech quality of the hearing aid.

  • A COM Based High Speed Serial Link Optimization Using Machine Learning Open Access

    Yan WANG  Qingsheng HU  

     
    PAPER

      Pubricized:
    2022/05/09
      Vol:
    E105-C No:11
      Page(s):
    684-691

    This paper presents a channel operating margin (COM) based high-speed serial link optimization using machine learning (ML). COM that is proposed for evaluating serial link is calculated at first and during the calculation several important equalization parameters corresponding to the best configuration are extracted which can be used for the ML modeling of serial link. Then a deep neural network containing hidden layers are investigated to model a whole serial link equalization including transmitter feed forward equalizer (FFE), receiver continuous time linear equalizer (CTLE) and decision feedback equalizer (DFE). By training, validating and testing a lot of samples that meet the COM specification of 400GAUI-8 C2C, an effective ML model is generated and the maximum relative error is only 0.1 compared with computation results. At last 3 link configurations are discussed from the view of tradeoff between the link performance and cost, illustrating that our COM based ML modeling method can be applied to advanced serial link design for NRZ, PAM4 or even other higher level pulse amplitude modulation signal.

  • Evaluating the Stability of Deep Image Quality Assessment with Respect to Image Scaling

    Koki TSUBOTA  Hiroaki AKUTSU  Kiyoharu AIZAWA  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2022/07/25
      Vol:
    E105-D No:10
      Page(s):
    1829-1833

    Image quality assessment (IQA) is a fundamental metric for image processing tasks (e.g., compression). With full-reference IQAs, traditional IQAs, such as PSNR and SSIM, have been used. Recently, IQAs based on deep neural networks (deep IQAs), such as LPIPS and DISTS, have also been used. It is known that image scaling is inconsistent among deep IQAs, as some perform down-scaling as pre-processing, whereas others instead use the original image size. In this paper, we show that the image scale is an influential factor that affects deep IQA performance. We comprehensively evaluate four deep IQAs on the same five datasets, and the experimental results show that image scale significantly influences IQA performance. We found that the most appropriate image scale is often neither the default nor the original size, and the choice differs depending on the methods and datasets used. We visualized the stability and found that PieAPP is the most stable among the four deep IQAs.

  • Sample Selection Approach with Number of False Predictions for Learning with Noisy Labels

    Yuichiro NOMURA  Takio KURITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/07/21
      Vol:
    E105-D No:10
      Page(s):
    1759-1768

    In recent years, deep neural networks (DNNs) have made a significant impact on a variety of research fields and applications. One drawback of DNNs is that it requires a huge amount of dataset for training. Since it is very expensive to ask experts to label the data, many non-expert data collection methods such as web crawling have been proposed. However, dataset created by non-experts often contain corrupted labels, and DNNs trained on such dataset are unreliable. Since DNNs have an enormous number of parameters, it tends to overfit to noisy labels, resulting in poor generalization performance. This problem is called Learning with Noisy labels (LNL). Recent studies showed that DNNs are robust to the noisy labels in the early stage of learning before over-fitting to noisy labels because DNNs learn the simple patterns first. Therefore DNNs tend to output true labels for samples with noisy labels in the early stage of learning, and the number of false predictions for samples with noisy labels is higher than for samples with clean labels. Based on these observations, we propose a new sample selection approach for LNL using the number of false predictions. Our method periodically collects the records of false predictions during training, and select samples with a low number of false predictions from the recent records. Then our method iteratively performs sample selection and training a DNNs model using the updated dataset. Since the model is trained with more clean samples and records more accurate false predictions for sample selection, the generalization performance of the model gradually increases. We evaluated our method on two benchmark datasets, CIFAR-10 and CIFAR-100 with synthetically generated noisy labels, and the obtained results which are better than or comparative to the-state-of-the-art approaches.

  • Surrogate-Based EM Optimization Using Neural Networks for Microwave Filter Design Open Access

    Masataka OHIRA  Zhewang MA  

     
    INVITED PAPER

      Pubricized:
    2022/03/15
      Vol:
    E105-C No:10
      Page(s):
    466-473

    A surrogate-based electromagnetic (EM) optimization using neural networks (NNs) is presented for computationally efficient microwave bandpass filter (BPF) design. This paper first describes the forward problem (EM analysis) and the inverse problems (EM design), and the two fundamental issues in BPF designs. The first issue is that the EM analysis is a time-consuming task, and the second one is that EM design highly depends on the structural optimization performed with the help of EM analysis. To accelerate the optimization design, two surrogate models of forward and inverse models are introduced here, which are built with the NNs. As a result, the inverse model can instantaneously guess initial structural parameters with high accuracy by simply inputting synthesized coupling-matrix elements into the NN. Then, the forward model in conjunction with optimization algorithm enables designers to rapidly find optimal structural parameters from the initial ones. The effectiveness of the surrogate-based EM optimization is verified through the structural designs of a typical fifth-order microstrip BPF with multiple couplings.

  • A Trade-Off between Memory Stability and Connection Sparsity in Simple Binary Associative Memories

    Kento SAKA  Toshimichi SAITO  

     
    LETTER-Nonlinear Problems

      Pubricized:
    2022/03/29
      Vol:
    E105-A No:9
      Page(s):
    1377-1380

    This letter studies a biobjective optimization problem in binary associative memories characterized by ternary connection parameters. First, we introduce a condition of parameters that guarantees storage of any desired memories and suppression of oscillatory behavior. Second, we define a biobjective problem based on two objectives that evaluate uniform stability of desired memories and sparsity of connection parameters. Performing precise numerical analysis for typical examples, we have clarified existence of a trade-off between the two objectives.

  • A Low-Cost Training Method of ReRAM Inference Accelerator Chips for Binarized Neural Networks to Recover Accuracy Degradation due to Statistical Variabilities

    Zian CHEN  Takashi OHSAWA  

     
    PAPER-Integrated Electronics

      Pubricized:
    2022/01/31
      Vol:
    E105-C No:8
      Page(s):
    375-384

    A new software based in-situ training (SBIST) method to achieve high accuracies is proposed for binarized neural networks inference accelerator chips in which measured offsets in sense amplifiers (activation binarizers) are transformed into biases in the training software. To expedite this individual training, the initial values for the weights are taken from results of a common forming training process which is conducted in advance by using the offset fluctuation distribution averaged over the fabrication line. SPICE simulation inference results for the accelerator predict that the accuracy recovers to higher than 90% even when the amplifier offset is as large as 40mV only after a few epochs of the individual training.

  • Convolutional Neural Networks Based Dictionary Pair Learning for Visual Tracking

    Chenchen MENG  Jun WANG  Chengzhi DENG  Yuanyun WANG  Shengqian WANG  

     
    PAPER-Vision

      Pubricized:
    2022/02/21
      Vol:
    E105-A No:8
      Page(s):
    1147-1156

    Feature representation is a key component of most visual tracking algorithms. It is difficult to deal with complex appearance changes with low-level hand-crafted features due to weak representation capacities of such features. In this paper, we propose a novel tracking algorithm through combining a joint dictionary pair learning with convolutional neural networks (CNN). We utilize CNN model that is trained on ImageNet-Vid to extract target features. The CNN includes three convolutional layers and two fully connected layers. A dictionary pair learning follows the second fully connected layer. The joint dictionary pair is learned upon extracted deep features by the trained CNN model. The temporal variations of target appearances are learned in the dictionary learning. We use the learned dictionaries to encode target candidates. A linear combination of atoms in the learned dictionary is used to represent target candidates. Extensive experimental evaluations on OTB2015 demonstrate the superior performances against SOTA trackers.

  • MKGN: A Multi-Dimensional Knowledge Enhanced Graph Network for Multi-Hop Question and Answering

    Ying ZHANG  Fandong MENG  Jinchao ZHANG  Yufeng CHEN  Jinan XU  Jie ZHOU  

     
    PAPER-Natural Language Processing

      Pubricized:
    2021/12/29
      Vol:
    E105-D No:4
      Page(s):
    807-819

    Machine reading comprehension with multi-hop reasoning always suffers from reasoning path breaking due to the lack of world knowledge, which always results in wrong answer detection. In this paper, we analyze what knowledge the previous work lacks, e.g., dependency relations and commonsense. Based on our analysis, we propose a Multi-dimensional Knowledge enhanced Graph Network, named MKGN, which exploits specific knowledge to repair the knowledge gap in reasoning process. Specifically, our approach incorporates not only entities and dependency relations through various graph neural networks, but also commonsense knowledge by a bidirectional attention mechanism, which aims to enhance representations of both question and contexts. Besides, to make the most of multi-dimensional knowledge, we investigate two kinds of fusion architectures, i.e., in the sequential and parallel manner. Experimental results on HotpotQA dataset demonstrate the effectiveness of our approach and verify that using multi-dimensional knowledge, especially dependency relations and commonsense, can indeed improve the reasoning process and contribute to correct answer detection.

  • Polarity Classification of Social Media Feeds Using Incremental Learning — A Deep Learning Approach

    Suresh JAGANATHAN  Sathya MADHUSUDHANAN  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2021/09/15
      Vol:
    E105-A No:3
      Page(s):
    584-593

    Online feeds are streamed continuously in batches with varied polarities at varying times. The system handling the online feeds must be trained to classify all the varying polarities occurring dynamically. The polarity classification system designed for the online feeds must address two significant challenges: i) stability-plasticity, ii) category-proliferation. The challenges faced in the polarity classification of online feeds can be addressed using the technique of incremental learning, which serves to learn new classes dynamically and also retains the previously learned knowledge. This paper proposes a new incremental learning methodology, ILOF (Incremental Learning of Online Feeds) to classify the feeds by adopting Deep Learning Techniques such as RNN (Recurrent Neural Networks) and LSTM (Long Short Term Memory) and also ELM (Extreme Learning Machine) for addressing the above stated problems. The proposed method creates a separate model for each batch using ELM and incrementally learns from the trained batches. The training of each batch avoids the retraining of old feeds, thus saving training time and memory space. The trained feeds can be discarded when new batch of feeds arrives. Experiments are carried out using the standard datasets comprising of long feeds (IMDB, Sentiment140) and short feeds (Twitter, WhatsApp, and Twitter airline sentiment) and the proposed method showed positive results in terms of better performance and accuracy.

  • Experimental Study of Fault Injection Attack on Image Sensor Interface for Triggering Backdoored DNN Models Open Access

    Tatsuya OYAMA  Shunsuke OKURA  Kota YOSHIDA  Takeshi FUJINO  

     
    PAPER

      Pubricized:
    2021/10/26
      Vol:
    E105-A No:3
      Page(s):
    336-343

    A backdoor attack is a type of attack method inducing deep neural network (DNN) misclassification. An adversary mixes poison data, which consist of images tampered with adversarial marks at specific locations and of adversarial target classes, into a training dataset. The backdoor model classifies only images with adversarial marks into an adversarial target class and other images into the correct classes. However, the attack performance degrades sharply when the location of the adversarial marks is slightly shifted. An adversarial mark that induces the misclassification of a DNN is usually applied when a picture is taken, so the backdoor attack will have difficulty succeeding in the physical world because the adversarial mark position fluctuates. This paper proposes a new approach in which an adversarial mark is applied using fault injection on the mobile industry processor interface (MIPI) between an image sensor and the image recognition processor. Two independent attack drivers are electrically connected to the MIPI data lane in our attack system. While almost all image signals are transferred from the sensor to the processor without tampering by canceling the attack signal between the two drivers, the adversarial mark is injected into a given location of the image signal by activating the attack signal generated by the two attack drivers. In an experiment, the DNN was implemented on a Raspberry pi 4 to classify MNIST handwritten images transferred from the image sensor over the MIPI. The adversarial mark successfully appeared in a specific small part of the MNIST images using our attack system. The success rate of the backdoor attack using this adversarial mark was 91%, which is much higher than the 18% rate achieved using conventional input image tampering.

  • The Ratio of the Desired Parameters of Deep Neural Networks

    Yasushi ESAKI  Yuta NAKAHARA  Toshiyasu MATSUSHIMA  

     
    LETTER-Neural Networks and Bioengineering

      Pubricized:
    2021/10/08
      Vol:
    E105-A No:3
      Page(s):
    433-435

    There have been some researchers that investigate the accuracy of the approximation to a function that shows a generating pattern of data by a deep neural network. However, they have confirmed only whether at least one function close to the function showing a generating pattern exists in function classes of deep neural networks whose parameter values are changing. Therefore, we propose a new criterion to infer the approximation accuracy. Our new criterion shows the existence ratio of functions close to the function showing a generating pattern in the function classes. Moreover, we show a deep neural network with a larger number of layers approximates the function showing a generating pattern more accurately than one with a smaller number of layers under the proposed criterion, with numerical simulations.

  • Layerweaver+: A QoS-Aware Layer-Wise DNN Scheduler for Multi-Tenant Neural Processing Units

    Young H. OH  Yunho JIN  Tae Jun HAM  Jae W. LEE  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2021/11/11
      Vol:
    E105-D No:2
      Page(s):
    427-431

    Many cloud service providers employ specialized hardware accelerators, called neural processing units (NPUs), to accelerate deep neural networks (DNNs). An NPU scheduler is responsible for scheduling incoming user requests and required to satisfy the two, often conflicting, optimization goals: maximizing system throughput and satisfying quality-of-service (QoS) constraints (e.g., deadlines) of individual requests. We propose Layerweaver+, a low-cost layer-wise DNN scheduler for NPUs, which provides both high system throughput and minimal QoS violations. For a serving scenario based on the industry-standard MLPerf inference benchmark, Layerweaver+ significantly improves the system throughput by up to 266.7% over the baseline scheduler serving one DNN at a time.

  • Image Adjustment for Multi-Exposure Images Based on Convolutional Neural Networks

    Isana FUNAHASHI  Taichi YOSHIDA  Xi ZHANG  Masahiro IWAHASHI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2021/10/21
      Vol:
    E105-D No:1
      Page(s):
    123-133

    In this paper, we propose an image adjustment method for multi-exposure images based on convolutional neural networks (CNNs). We call image regions without information due to saturation and object moving in multi-exposure images lacking areas in this paper. Lacking areas cause the ghosting artifact in fused images from sets of multi-exposure images by conventional fusion methods, which tackle the artifact. To avoid this problem, the proposed method estimates the information of lacking areas via adaptive inpainting. The proposed CNN consists of three networks, warp and refinement, detection, and inpainting networks. The second and third networks detect lacking areas and estimate their pixel values, respectively. In the experiments, it is observed that a simple fusion method with the proposed method outperforms state-of-the-art fusion methods in the peak signal-to-noise ratio. Moreover, the proposed method is applied for various fusion methods as pre-processing, and results show obviously reducing artifacts.

  • Radar Emitter Identification Based on Auto-Correlation Function and Bispectrum via Convolutional Neural Network

    Zhiling XIAO  Zhenya YAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/06/10
      Vol:
    E104-B No:12
      Page(s):
    1506-1513

    This article proposes to apply the auto-correlation function (ACF), bispectrum analysis, and convolutional neural networks (CNN) to implement radar emitter identification (REI) based on intrapulse features. In this work, we combine ACF with bispectrum for signal feature extraction. We first calculate the ACF of each emitter signal, and then the bispectrum of the ACF and obtain the spectrograms. The spectrum images are taken as the feature maps of the radar emitters and fed into the CNN classifier to realize automatic identification. We simulate signal samples of different modulation types in experiments. We also consider the feature extraction method directly using bispectrum analysis for comparison. The simulation results demonstrate that by combining ACF with bispectrum analysis, the proposed scheme can attain stronger robustness to noise, the spectrograms of our approach have more pronounced features, and our approach can achieve better identification performance at low signal-to-noise ratios.

  • Multimodal-Based Stream Integrated Neural Networks for Pain Assessment

    Ruicong ZHI  Caixia ZHOU  Junwei YU  Tingting LI  Ghada ZAMZMI  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2021/09/10
      Vol:
    E104-D No:12
      Page(s):
    2184-2194

    Pain is an essential physiological phenomenon of human beings. Accurate assessment of pain is important to develop proper treatment. Although self-report method is the gold standard in pain assessment, it is not applicable to individuals with communicative impairment. Non-verbal pain indicators such as pain related facial expressions and changes in physiological parameters could provide valuable insights for pain assessment. In this paper, we propose a multimodal-based Stream Integrated Neural Network with Different Frame Rates (SINN) that combines facial expression and biomedical signals for automatic pain assessment. The main contributions of this research are threefold. (1) There are four-stream inputs of the SINN for facial expression feature extraction. The variant facial features are integrated with biomedical features, and the joint features are utilized for pain assessment. (2) The dynamic facial features are learned in both implicit and explicit manners to better represent the facial changes that occur during pain experience. (3) Multiple modalities are utilized to identify various pain states, including facial expression and biomedical signals. The experiments are conducted on publicly available pain datasets, and the performance is compared with several deep learning models. The experimental results illustrate the superiority of the proposed model, and it achieves the highest accuracy of 68.2%, which is up to 5% higher than the basic deep learning models on pain assessment with binary classification.

  • Evaluation Metrics for the Cost of Data Movement in Deep Neural Network Acceleration

    Hongjie XU  Jun SHIOMI  Hidetoshi ONODERA  

     
    PAPER

      Pubricized:
    2021/06/01
      Vol:
    E104-A No:11
      Page(s):
    1488-1498

    Hardware accelerators are designed to support a specialized processing dataflow for everchanging deep neural networks (DNNs) under various processing environments. This paper introduces two hardware properties to describe the cost of data movement in each memory hierarchy. Based on the hardware properties, this paper proposes a set of evaluation metrics that are able to evaluate the number of memory accesses and the required memory capacity according to the specialized processing dataflow. Proposed metrics are able to analytically predict energy, throughput, and area of a hardware design without detailed implementation. Once a processing dataflow and constraints of hardware resources are determined, the proposed evaluation metrics quickly quantify the expected hardware benefits, thereby reducing design time.

  • A Two-Stage Hardware Trojan Detection Method Considering the Trojan Probability of Neighbor Nets

    Kento HASEGAWA  Tomotaka INOUE  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1516-1525

    Due to the rapid growth of the information industry, various Internet of Things (IoT) devices have been widely used in our daily lives. Since the demand for low-cost and high-performance hardware devices has increased, malicious third-party vendors may insert malicious circuits into the products to degrade their performance or to leak secret information stored at the devices. The malicious circuit surreptitiously inserted into the hardware products is known as a ‘hardware Trojan.’ How to detect hardware Trojans becomes a significant concern in recent hardware production. In this paper, we propose a hardware Trojan detection method that employs two-stage neural networks and effectively utilizes the Trojan probability of neighbor nets. At the first stage, the 11 Trojan features are extracted from the nets in a given netlist, and then we estimate the Trojan probability that shows the probability of the Trojan nets. At the second stage, we learn the Trojan probability of the neighbor nets for each net in the netlist and classify the nets into a set of normal nets and Trojan ones. The experimental results demonstrate that the average true positive rate becomes 83.6%, and the average true negative rate becomes 96.5%, which is sufficiently high compared to the existing methods.

21-40hit(287hit)